Power-Stroke-Driven Muscle Contraction

To show that acto-myosin contraction can be propelled directly through a conformational change, we present in these lecture notes a review of a recently developed approach to muscle contraction where myosin power-stroke is interpreted as the main active mechanism. By emphasizing the active role of power stroke, the proposed model contributes to building a conceptual bridge between processive and nonprocessive motors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 50.28 Price includes VAT (France)

Softcover Book EUR 63.29 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Multistep orthophosphate release tunes actomyosin energy transduction

Article Open access 05 August 2022

Coordinated force generation of skeletal myosins in myofilaments through motor coupling

Article Open access 06 July 2017

Huxley’s Model for Muscle Contraction Revisited: The Importance of Microscopic Reversibility

Chapter © 2015

References

  1. W.W. Ahmed, É. Fodor, T. Betz, Active cell mechanics: measurement and theory. Biochim. Biophys. Acta, Mol. Cell Res. 1853(11), 3083–3094 (2015) Google Scholar
  2. R. Ait-Haddou, W. Herzog, Brownian ratchet models of molecular motors. Cell Biochem. Biophys. 38(2), 191–213 (2003) Google Scholar
  3. B. Alberts, Molecular Biology of the Cell, 5th edn. (Garland Science, New York, 2007) Google Scholar
  4. F. Alouges, A. DeSimone, A. Lefebvre, Optimal strokes for low Reynolds number swimmers: an example. J. Nonlinear Sci. 18(3), 277–302 (2008) MathSciNetMATHGoogle Scholar
  5. J. Alvarado, M. Sheinman, A. Sharma, F.C. MacKintosh, G.H. Koenderink, Molecular motors robustly drive active gels to a critically connected state. Nat. Phys. 9, 591—597 (2013) Google Scholar
  6. J.P. Baltanás, L. Lopez, I.I. Blechman, P.S. Landa, A. Zaikin, J. Kurths, M.A.F. Sanjuán, Experimental evidence, numerics, and theory of vibrational resonance in bistable systems. Phys. Rev. E 67(6), 066119 (2003) Google Scholar
  7. C. Barclay, R. Woledge, N. Curtin, Inferring crossbridge properties from skeletal muscle energetics. Prog. Biophys. Mol. Bio. 102(1), 53–71 (2010) Google Scholar
  8. R. Bartussek, Ratchets driven by colored gaussian noise, in Stochastic Dynamics, ed. by L. Schimansky-Geier, T. Pöschel. Lecture Notes in Physics, vol. 484 (Springer, Berlin, 1997), pp. 68–80 Google Scholar
  9. U. Basu, C. Maes, K. Netočnỳ, How statistical forces depend on the thermodynamics and kinetics of driven media. Phys. Rev. Lett. 114(25), 250601 (2015) Google Scholar
  10. I. Bena, C. Van den Broeck, R. Kawai, K. Lindenberg, Drift by dichotomous Markov noise. Phys. Rev. E 68(4), 041111 (2003) Google Scholar
  11. L. Berthier, J. Kurchan, Non-equilibrium glass transitions in driven and active matter. Nat. Phys. 9(5), 310–314 (2013) Google Scholar
  12. J. Bialké, J.T. Siebert, H. Löwen, T. Speck, Negative interfacial tension in phase-separated active Brownian particles. Phys. Rev. Lett. 115(9), 098301 (2015) Google Scholar
  13. I.I. Blekhman, Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications (World Scientific, Singapore, 2000) Google Scholar
  14. J.-P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195(4), 127–293 (1990) MathSciNetGoogle Scholar
  15. Z. Bryant, D. Altman, J. Spudich, The power stroke of myosin vi and the basis of reverse directionality. Proc. Nat. Acad. Sci. U.S.A. 104(3), 772–777 (2007) Google Scholar
  16. M. Bukov, L. D’Alessio, A. Polkovnikov, Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64(2), 139–226 (2015) Google Scholar
  17. E.I. Butikov, An improved criterion for Kapitza’s pendulum stability. J. Phys. A Math. Theor. 44(29), 295202 (2011) Google Scholar
  18. F.J. Cao, L. Dinis, J.M.R. Parrondo, Feedback control in a collective flashing ratchet. Phys. Rev. Lett. 93(4), 040603 (2004) Google Scholar
  19. M. Caruel, J.-M. Allain, L. Truskinovsky, Muscle is a meta-material operating at a critical point. Phys. Rev. Lett. 110(24), 248103 (2013) Google Scholar
  20. L.F. Cugliandolo, D.R. Grempel, C.A. da Silva Santos, From second to first order transitions in a disordered quantum magnet. Phys. Rev. Lett. 85(12), 2589–2592 (2000) Google Scholar
  21. H.B. da Rocha, L. Truskinovsky, Functionality of disorder in muscle mechanics. Phys. Rev. Lett. 122(8), 088103 (2019) Google Scholar
  22. E. De La Cruz, E. Ostap, Relating biochemistry and function in the myosin superfamily. Curr. Opin. Cell Biol. 16(1):61–67 (2004) Google Scholar
  23. S. Denisov, Particle with internal dynamical asymmetry: chaotic self-propulsion and turning. Phys. Lett. A 296(4), 197–203 (2002) MATHGoogle Scholar
  24. I. Derényi, T. Vicsek, The Kinesin walk: A dynamic model with elastically coupled heads. Proc. Nat. Acad. Sci. U.S.A. 93(13), 6775–6779 (1996) Google Scholar
  25. C.R. Doering, W. Horsthemke, J. Riordan, Nonequilibrium fluctuation-induced transport. Phys. Rev. Lett. 72(19), 2984 (1994) Google Scholar
  26. T. Duke, Molecular model of muscle contraction. Proc. Nat. Acad. Sci. U.S.A. 96(6), 2770–2775 (1999) Google Scholar
  27. T. Duke, S. Leibler, Motor protein mechanics: a stochastic model with minimal mechanochemical coupling. Biophys. J. 71(3), 1235–1247 (1996) Google Scholar
  28. B. Dybiec, E. Gudowska-Nowak, I.M. Sokolov, Stationary states in Langevin dynamics under asymmetric Lévy noises. Phys. Rev. E 76(4), 041122 (2007) Google Scholar
  29. B. Dybiec, L. Schimansky-Geier, Emergence of bimodality in noisy systems with single-well potential. Eur. Phys. J. B 57(3), 313–320 (2007) Google Scholar
  30. K.A.P. Edman, Double-hyperbolic force velocity relation in frog-muscle fibers. J. Physiol. Lond. 404, 301–321 (1988) Google Scholar
  31. K.A.P. Edman, A. Månsson, C. Caputo, The biphasic force-velocity relationship in frog muscle fibres and its evaluation in terms of cross-bridge function. J. Physiol. 503(1), 141–156 (1997) Google Scholar
  32. T. Elston, C. Peskin, The role of protein flexibility in molecular motor function: coupled diffusion in a tilted periodic potential. SIAM J. Appl. Math. 60(3), 842–867 (2000) MathSciNetMATHGoogle Scholar
  33. T. Erdmann, U. Schwarz, Stability of adhesion clusters under constant force. Phys. Rev. Lett. 92(10), 108102 (2004) Google Scholar
  34. N. Etemadi, M. Kaminski, Strong law of large numbers for 2-exchangeable random variables. Stat. Probab. Lett. 28(3), 245–250 (1996) MathSciNetMATHGoogle Scholar
  35. M. Feito, J.P. Baltanás, F.J. Cao, Rocking feedback-controlled ratchets. Phys. Rev. E 80(3), 031128 (2009) Google Scholar
  36. M. Feito, F. J. Cao, Time-delayed feedback control of a flashing ratchet. Phys. Rev. E 76(6), 061113 (2007) Google Scholar
  37. É. Fodor, W.W. Ahmed, M. Almonacid, M. Bussonnier, N.S. Gov, M.-H. Verlhac, T. Betz, P. Visco, F. van Wijland, Nonequilibrium dissipation in living oocytes (2015). arXiv:1511.00921 Google Scholar
  38. C. Fogle, J. Rudnick, D. Jasnow, Protein viscoelastic dynamics: a model system (2015). arXiv:1502.00343 [cond-mat] Google Scholar
  39. F. Fritzen, D.M. Kochmann, Material instability-induced extreme damping in composites: a computational study. Int. J. Solids Struct. 51(23–24), 4101–4112 (2014) Google Scholar
  40. R. Gallardo, O. Idigoras, P. Landeros, A. Berger, Analytical derivation of critical exponents of the dynamic phase transition in the mean-field approximation. Phys. Rev. E 86(5), 051101 (2012) Google Scholar
  41. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance: a remarkable idea that changed our perception of noise. Eur. Phys. J. B 69(1), 1–3 (2009) Google Scholar
  42. M.A. Geeves, Stretching the lever-arm theory. Nature 415(6868), 129–131 (2002) Google Scholar
  43. B. Geislinger, R. Kawai, Brownian molecular motors driven by rotation-translation coupling. Phys. Rev. E 74(1), 011912 (2006) Google Scholar
  44. A. Grosberg, J.-F. Joanny, Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats. Phys. Rev. E 92(3), 032118 (2015) Google Scholar
  45. T. Guérin, J. Prost, P. Martin, J.-F. Joanny, Coordination and collective properties of molecular motors: theory. Curr. Opin. Cell Biol. 22(1), 14–20 (2010) Google Scholar
  46. T. Guérin, J. Prost, P. Martin, J.-F. Joanny, Dynamical behavior of molecular motor assemblies in the rigid and crossbridge models. Eur. Phys. J. E 34(6), 60 (2011) Google Scholar
  47. A.N. Gupta, A. Vincent, K. Neupane, H. Yu, F. Wang, M.T. Woodside, Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements. Nat. Phys. 7(8), 631–634 (2011) Google Scholar
  48. P. Hänggi, P. Jung, Colored noise in dynamical-systems, in Advances in Chemical Physics, vol. 89 (Wiley, London, 1995), pp. 239–326 Google Scholar
  49. P. Hänggi, F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 81(1), 387–442 (2009) Google Scholar
  50. D. Hennig, Current control in a tilted washboard potential via time-delayed feedback. Phys. Rev. E 79(4), 041114 (2009) Google Scholar
  51. A.V. Hill, The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B 126, 136–195 (1938) Google Scholar
  52. T. Hill, Theoretical formalism for the sliding filament model of contraction of striated muscle. part I. Prog. Biophys. Mol. Biol. 28, 267–340 (1974) Google Scholar
  53. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Sunderland, 2001) Google Scholar
  54. A.F. Huxley, R.M. Simmons, Proposed mechanism of force generation in striated muscle. Nature 233(5321), 533–538 (1971) Google Scholar
  55. A. Ichiki, Y. Tadokoro, M.I. Dykman, Singular response of bistable systems driven by telegraph noise. Phys. Rev. E 85(3), 031106 (2012) Google Scholar
  56. M. Joyeux, E. Bertin, Pressure of a gas of underdamped active dumbbells. Phys. Rev. E 93(3), 032605 (2016) Google Scholar
  57. F. Jülicher, Force and motion generation of molecular motors: a generic description, in Transport and Structure (Springer, Berlin, 1999), pp. 46–74 Google Scholar
  58. F. Jülicher, A. Ajdari, J. Prost, Modeling molecular motors. Rev. Mod. Phys. 69(4), 1269–1281 (1997) Google Scholar
  59. F. Jülicher, J. Prost, Spontaneous oscillations of collective molecular motors. Phys. Rev. Lett. 78(23), 4510–4513 (1997) Google Scholar
  60. K. Kawaguchi, S. Ishiwata, Temperature dependence of force, velocity, and processivity of single Kinesin molecules. Biochem. Bioph. Res. Commun. 272(3), 895–899 (2000) Google Scholar
  61. M. Khoury, J.P. Gleeson, J.M. Sancho, A.M. Lacasta, K. Lindenberg, Diffusion coefficient in periodic and random potentials. Phys. Rev. E 80(2), 021123 (2009) Google Scholar
  62. K. Kitamura, M. Tokunaga, S. Esaki, A. Iwane, T. Yanagida, Mechanism of muscle contraction based on stochastic properties of single actomyosin motors observed in vitro. Biophysics 1, 1–19 (2005) Google Scholar
  63. P. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations. Applications of Mathematics, vol. 23 (Springer, Berlin, 1992) Google Scholar
  64. V. Klyatskin, Dynamic systems with parameter fluctuations of the telegraphic-process type. Radiofizika 20(4), 562–575 (1977) MathSciNetGoogle Scholar
  65. G. Lan, S.X. Sun, Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation. Biophys. J. 88(6), 4107 (2005) Google Scholar
  66. P.S. Landa, P.V.E. McClintock, Nonlinear systems with fast and slow motions. changes in the probability distribution for fast motions under the influence of slower ones. Phys. Rep. 532(1), 1–26 (2013) Google Scholar
  67. A. Lewalle, W. Steffen, O. Stevenson, Z. Ouyang, J. Sleep, Single-molecule measurement of the stiffness of the Rigor myosin head. Biophys. J. 94(6), 2160–2169 (2008) Google Scholar
  68. Y.-X. Li, Brownian motors possessing internal degree of freedom. Phys. A 251(3), 382–388 (1998) Google Scholar
  69. M. Linari, M. Caremani, V. Lombardi, A kinetic model that explains the effect of inorganic phosphate on the mechanics and energetics of isometric contraction of fast skeletal muscle. Proc. Biol. Sci. 277(1678), 19–27 (2010) Google Scholar
  70. B. Lindner, M. Kostur, L. Schimansky-Geier, Optimal diffusive transport in a tilted periodic potential. Fluct. Noise Lett. 1(1), R25–R39 (2001) Google Scholar
  71. V. Lombardi, G. Piazzesi, The contractile response during steady lengthening of stimulated frog-muscle fibers. J. Physiol. Lond. 431, 141–171 (1990) Google Scholar
  72. R. Lymn, E. Taylor, Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10(25), 4617–4624 (1971) Google Scholar
  73. Magnasco, Molecular combustion motors. Phys. Rev. Lett. 72(16), 2656–2659 (1994) Google Scholar
  74. M.O. Magnasco, Forced thermal ratchets. Phys. Rev. Lett. 71(10), 1477–1481 (1993) Google Scholar
  75. Y.A. Makhnovskii, V.M. Rozenbaum, D.-Y. Yang, S.H. Lin, Net transport due to noise-induced internal reciprocating motion. J. Chem. Phys. 130(16), 164101 (2009) Google Scholar
  76. L. Marcucci, L. Truskinovsky, Mechanics of the power stroke in myosin II. Phys. Rev. E 81(5), 051915 (2010) Google Scholar
  77. P. Martin, A.D. Mehta, A.J. Hudspeth, Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. PNAS 97(22), 12026–12031 (2000) Google Scholar
  78. J.L. Mateos, F. Alatriste, Brownian motors and stochastic resonance. Chaos 21(4) (2011) Google Scholar
  79. J. Menche, L. Schimansky-Geier, Two particles with bistable coupling on a ratchet. Phys. Lett. A 359(2), 90–98 (2006) Google Scholar
  80. E. Meyhöfer, J. Howard, The force generated by a single Kinesin molecule against an elastic load. Proc. Nat. Acad. Sci. U.S.A. 92(2), 574–578 (1995) Google Scholar
  81. M.M. Millonas, M.I. Dykman, Transport and current reversal in stochastically driven ratchets. Phys. Lett. A 185(1), 65–69 (1994) Google Scholar
  82. A. Mogilner, A.J. Fisher, R.J. Baskin, Structural changes in the neck linker of Kinesin explain the load dependence of the motor’s mechanical cycle. J. Theor. Biol. 211(2), 143–157 (2001) Google Scholar
  83. A. Månsson, Actomyosin-ADP states, interhead cooperativity, and the force-velocity relation of skeletal muscle. Biophys. J. 98(7), 1237–1246 (2010) Google Scholar
  84. A. Muhlrad, Y.M. Peyser, M. Nili, K. Ajtai, E. Reisler, T.P. Burghardt, Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement. Biophys. J. 84(2), 1047 (2003) Google Scholar
  85. M.A. Muñoz, F.D.L. Santos, M.M.T.D. Gama, Generic two-phase coexistence in nonequilibrium systems. Eur. Phys. J. B 43(1):73–79 (2005) Google Scholar
  86. K.H. Nagai, Y. Sumino, R. Montagne, I.S. Aranson, H. Chaté, Collective motion of self-propelled particles with memory. Phys. Rev. Lett. 114(16), 168001 (2015) Google Scholar
  87. E. Pate, G. Wilson, M. Bhimani, R. Cooke, Temperature-dependence of the inhibitory of effects on orthovanadate on shortening velocity in fast skeletalimuscle. Biophys. J. 66(5), 1554–1562 (1994) Google Scholar
  88. G. Piazzesi, V. Lombardi, A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys. J. 68(5), 1966–1979 (1995) Google Scholar
  89. K.R. Pilkiewicz, J.D. Eaves, Reentrance in an active glass mixture. Soft Matter 10(38), 7495–7501 (2014) Google Scholar
  90. M. Porto, Molecular motor based entirely on the coulomb interaction. Phys. Rev. E 63(3), 030102 (2001) Google Scholar
  91. J. Prost, J.-F. Chauwin, L. Peliti, A. Ajdari, Asymmetric pumping of particles. Phys. Rev. Lett. 72(16), 2652 (1994) Google Scholar
  92. G. Puglisi, L. Truskinovsky, Cohesion-decohesion asymmetry in geckos. Phys. Rev. E 87(3), 032714 (2013) Google Scholar
  93. H. Qian, Vector field formalism and analysis for a class of thermal ratchets. Phys. Rev. Lett. 81(15), 3063–3066 (1998) Google Scholar
  94. P. Recho, L. Truskinovsky, Asymmetry between pushing and pulling for crawling cells. Phys. Rev. E 87(2), 022720 (2013) Google Scholar
  95. P. Reimann, Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361(2–4), 57–265 (2002) MathSciNetMATHGoogle Scholar
  96. P. Reimann, Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361(2–4), 57–265 (2002) MathSciNetMATHGoogle Scholar
  97. P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J.M. Rubi, A. Pérez-Madrid, Giant acceleration of free diffusion by use of tilted periodic potentials. Phys. Rev. Lett. 87(1), 010602 (2001) Google Scholar
  98. H. Risken, The Fokker–Planck Equation (Springer, Berlin, 1989) MATHGoogle Scholar
  99. V.M. Rozenbaum, Y.A. Makhnovskii, S.-Y. Sheu, D.-Y. Yang, S.H. Lin, Two-state brownian motor driven by synchronously fluctuating unbiased forces. Phys. Rev. E 84(2), 021104 (2011) Google Scholar
  100. P. Sarkar, A.K. Maity, A. Shit, S. Chattopadhyay, J.R. Chaudhuri, S.K. Banik, Controlling mobility via rapidly oscillating time-periodic stimulus. Chem. Phys. Lett. 602, 4–9 (2014) Google Scholar
  101. P. Sarkar, A. Shit, S. Chattopadhyay, S. K. Banik, Profiling the overdamped dynamics of a nonadiabatic system. Chem. Phys. 458, 86–91 (2015) Google Scholar
  102. S. Savel’ev, F. Marchesoni, F. Nori, Stochastic transport of interacting particles in periodically driven ratchets. Phys. Rev. E 70(6), 061107 (2004) Google Scholar
  103. G. Schappacher-Tilp, T. Leonard, G. Desch, W. Herzog, A novel three-filament model of force generation in eccentric contraction of skeletal muscles. PLoS One 10(3), e0117634 (2015) Google Scholar
  104. M.J. Schnitzer, K. Visscher, S.M. Block, Force production by single Kinesin motors. Nat. Cell Biol. 2(10), 718–723 (2000) Google Scholar
  105. K. Sekimoto, Kinetic characterization of heat bath and the energetics of thermal ratchet models. J. Phys. Soc. Jpn. 66(5), 1234–1237 (1997) Google Scholar
  106. M. Sheinman, C.P. Broedersz, F.C. MacKintosh, Actively stressed marginal networks. Phys. Rev. Lett. 109(23), 238101 (2012) Google Scholar
  107. R. Sheshka, P. Recho, L. Truskinovsky, Rigidity generation by nonthermal fluctuations. Phys. Rev. E 93(5), 052604 (2016) Google Scholar
  108. R. Sheshka, L. Truskinovsky, Power-stroke-driven actomyosin contractility. Phys. Rev. E 89(1), 012708 (2014) Google Scholar
  109. D.A. Smith, M.A. Geeves, J. Sleep, S.M. Mijailovich, Towards a unified theory of muscle contraction. I: foundations. Ann. Biomed. Eng. 36(10), 1624–1640 (2008) Google Scholar
  110. A.P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri, M.E. Cates, J. Tailleur, Pressure and phase equilibria in interacting active Brownian spheres. Phys. Rev. Lett. 114(19), 198301 (2015) Google Scholar
  111. H. Sugi, T. Kobayashi, T. Tsuchiya, S. Chaen, S. Sugiura, Evidence for the essential role of myosin head lever arm domain and myosin subfragment-2 in muscle contraction, in Skeletal Muscle—From Myogenesis to Clinical Relations, ed. by J. Cseri, chap. 6 (InTech, 2012), pp. 125–140 Google Scholar
  112. H. Sugi, H. Minoda, Y. Inayoshi, F. Yumoto, T. Miyakawa, Y. Miyauchi, M. Tanokura, T. Akimoto, T. Kobayashi, S. Chaen, et al., Direct demonstration of the cross-bridge recovery stroke in muscle thick filaments in aqueous solution by using the hydration chamber. Proc. Nat. Acad. Sci. U.S.A. 105(45), 17396–17401 (2008) Google Scholar
  113. H.L. Sweeney, A. Houdusse, Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 39, 539–557 (2010) Google Scholar
  114. S.C. Takatori, J.F. Brady, Forces, stresses and the (thermo?) dynamics of active matter. Curr. Opin. Colloid Interface Sci. 21, 24–33 (2016) Google Scholar
  115. T. Tomé, M.J. de Oliveira, Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field. Phys. Rev. A 41(8), 4251 (1990) Google Scholar
  116. G. Tsiavaliaris, S. Fujita-Becker, D.J. Manstein, Molecular engineering of a backwards-moving myosin motor. Nature 427(6974), 558–561 (2004) Google Scholar
  117. M. Tyska, D. Warshaw, The myosin power stroke. Cell Mot. Cytoskel. 51(1), 1–15 (2002) Google Scholar
  118. C. Van den Broeck, J.M.R. Parrondo, R. Toral, Noise-induced nonequilibrium phase transition. Phys. Rev. Lett. 73(25), 3395 (1994) Google Scholar
  119. C. Veigel, C.F. Schmidt, Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat. Rev. Mol. Cell Bio. 12(3), 163–176 (2011) Google Scholar
  120. A. Vilfan, T. Duke, Instabilities in the transient response of muscle. Biophys. J.85(2), 818–827 (2003) Google Scholar
  121. A. Vilfan, T. Duke, Synchronization of active mechanical oscillators by an inertial load. Phys. Rev. Lett. 91(11), 114101 (2003) Google Scholar
  122. A. Vilfan, E. Frey, F. Schwabl, Force-velocity relations of a two-state crossbridge model for molecular motors. Europhys. Lett. 45(3), 283–289 (1999) Google Scholar
  123. K. Visscher, M.J. Schnitzer, S.M. Block, Single Kinesin molecules studied with a molecular force clamp. Nature 400(6740), 184–189 (1999) Google Scholar
  124. S. von Gehlen, M. Evstigneev, P. Reimann, Dynamics of a dimer in a symmetric potential: Ratchet effect generated by an internal degree of freedom. Phys. Rev. E 77(3), 031136 (2008) Google Scholar
  125. S. Walcott, P. Fagnant, K. Trybus, D. Warshaw, Smooth muscle heavy meromyosin phosphorylated on one of its two heads supports force and motion. J. Biol. Chem. 284(27), 18244–18251 (2009) Google Scholar
  126. H. Wang, G. Oster, Ratchets, power strokes, and molecular motors. Appl. Phys. A 75(2), 315–323 (2002) Google Scholar
  127. H. J. Woo, C.L. Moss, Analytical theory of the stochastic dynamics of the power stroke in nonprocessive motor proteins. Phys. Rev. E 72(5), 051924 (2005) Google Scholar
  128. M.T. Woodside, C. García-García, S.M. Block, Folding and unfolding single rna molecules under tension. Curr. Opin. Chem. Biol. 12(6), 640–646 (2008) Google Scholar
  129. A.A. Zaikin, J. Kurths, L. Schimansky-Geier, Doubly stochastic resonance. Phys. Rev. Lett. 85(2), 227 (2000) Google Scholar
  130. X.-J. Zhang, H. Qian, M. Qian, Stochastic theory of nonequilibrium steady states and its applications. Part I. Phys. Rep. 510(1), 1–86 (2012) MathSciNetGoogle Scholar

Author information

Authors and Affiliations

  1. NeoXam, Paris, France Raman Sheshka
  2. ESPCI, PMMH, CNRS – UMR 7636 PSL-ESPCI, Paris, France Lev Truskinovsky
  1. Raman Sheshka